Skip to main content

JDRF has now rebranded to Breakthrough T1D.
Our name has changed, our mission has not.

Complications

JDRF-funded researchers develop a genetic test to detect diabetic kidney disease early

Researchers have identified genes that predict the development and progression of diabetic kidney disease, giving us the potential to limit how many people with type 1 experience kidney failure and need invasive treatments such as dialysis.
Breakthrough T1D profile picture
Kate Lawton 16 February 2023

Diabetic kidney disease predictive genetic test researchers

Researchers have identified genes that predict the development and progression of diabetic kidney disease, giving us the potential to limit how many people with type 1 experience kidney failure and need invasive treatments such as dialysis.

The researchers, led by JDRF-funded Professor Sam El-Osta, used genetics data from four countries to develop a predictive test for diabetic kidney disease. Team leader of the human epigenetics group, Professor Sam El-Osta from the Department of Diabetes at Monash University, Australia, said: “Our discoveries will influence how we screen people for diabetic kidney disease and improve risk identification, disease prediction and diagnosis.”

What is diabetic kidney disease?

Diabetic kidney disease (DKD) is also called diabetic nephropathy because kidneys are made up of lots of small units called nephrons, which filter blood to remove waste. Diabetes can cause damage to the small blood vessels in the kidneys, which in turn damages the nephrons. DKD affects almost a third of people with type 1 diabetes, so it’s an important topic for type 1 researchers.

How do we currently test for DKD?

Clinicians currently use blood and urine tests as well as samples of a person’s kidneys to assess for DKD. But these measures are only sensitive enough to detect DKD once there is already quite a lot of damage. Dr Ishant Khurana, who was part of the international research team in this study, said: “The early stages of diabetic kidney disease are typically without symptoms. We have developed a reliable method that improves predictive risk and diagnostic accuracy.”

What did the researchers do?

Before now, genetic risk studies for DKD have only looked at the genes themselves, but Professor El-Osta’s team studied small tags attached to the genes. These tags are called DNA methylation and can turn genes on or off. So, even if a person has certain genes, these tags can switch them off, so the genes stop working.

A huge global sample of people with type 1 diabetes

The international research team looked at the DNA methylation tags of people with type 1 diabetes from Finland, Denmark, Hong Kong, and Thailand. They found common patterns in the genetics of people from all these countries. People with type 1 diabetes who had fewer DNA tags (less DNA methylation) had a higher risk of developing DKD.

Developing a genetic test to detect DKD sooner

Using this pattern shown in the research data, the researchers developed a genetic test that shows who is most likely to develop DKD. Professor El-Osta said: “This type of genetic testing is going to be the new standard for early detection and DKD care. Our new blood-based test can be readily available and used in remote areas with the added advantage of being more stable than methods measuring other biological parameters.”

What does this mean for people with type 1 diabetes?

This exciting breakthrough means that people with type 1 will be able to tell earlier whether they are at high risk of developing DKD. This will give people more time to learn about DKD and take precautions to slow the progression of their kidney damage. The researchers hope this early detection will help limit how many people with type 1 experience kidney failure and need invasive treatments such as dialysis.

Where can I read more about this research?

The full study is detailed in a scientific paper published in a journal called Journal of Clinical Investigation. Read the full research study on the early detection of diabetic kidney disease.

Related news

Read more
A headshot of Professor David Baker in his laboratory.
Research
14 October 2024

Breakthrough T1D-funded researcher wins Nobel Prize

Professor David Baker, a Breakthrough T1D-funded researcher at the University of Washington, has been awarded a Nobel Prize in Chemistry.

Read more
Five people in an office around a table in discussion about work
Research
3 September 2024

Top 10 research priorities for adults living with type 1 diabetes

A new study, which we helped conduct, reveals the most important unanswered questions about type 1 diabetes, based on the priorities of adults in the UK and Ireland.

Read more
A vial of clear liquid in front of a syringe.
Research
2 September 2024

JDRF-funded smart insulin research shows promise

When given to mice and pigs with type 1 diabetes, a new type of oral insulin developed with JDRF funding detects rising blood glucose and quickly lowers it to a safe level without causing hypos.

Read more
Type 1 diabetic daisy wearing a medical mask and sat looking at the camera from her hospital chair during one of her clinical trial appointments
Research
31 July 2024

Psoriasis drug shows promise for treating type 1 diabetes

New research finds that ustekinumab, a drug commonly used to treat psoriasis, may help children and adolescents with type 1 diabetes keep making insulin for longer.