Our resource hub is home to a wealth of articles, stories and videos about managing and living with type 1 diabetes.
Place your order for our free information packs that support adults and children who have been recently diagnosed.
Our researchers are working on different ways to develop a cure for type 1 diabetes - from growing insulin-producing beta cells in labs to hacking the immune system.
Learn about the technologies that can deliver insulin automatically when needed. And discover the next generation of insulins that are currently being developed.
You could win a cash prize of up to £25,000 when you play the Breakthrough T1D lottery. As well as the chance to win great prizes, you’ll also help fund our research to find a cure for type 1 diabetes.
Choose from a selection of modern and traditional designs in single or twin packs to support type 1 diabetes research this Christmas. Shop online and get fast delivery.
The announcement is the biggest treatment breakthrough for type 1 diabetes since the discovery of insulin.
This World Diabetes Day, we’re inviting you to celebrate by wearing your most joyful, whimsical and downright wonderful outfits.
We provide a wealth of information and free resources to help you support and empower your patients or students.
Take our free course for schools to learn more about supporting pupils with type 1 diabetes in educational settings.
JDRF has now rebranded to Breakthrough T1D. Our name has changed, our mission has not.
Home > News & events > News > Type 1 diabetes research progress: New stem cell therapy can reduce need for insulin by 91%
Professor Doug Melton, who successfully produced insulin-producing beta cells from stem cells
The first person to receive a new stem cell-derived therapy for type 1 diabetes, VX-880, has been found to need 91% less daily insulin 90 days after receiving just half the target dose.
This week pharmaceutical company Vertex announced the results of the clinical trial, which could lead us closer to developing cures for type 1 diabetes. The trial is built upon research developments funded by JDRF that made global headlines in 2014.
Curing type 1 diabetes requires a renewable source of beta cells that can be produced in the laboratory—and they must work. Once placed into the body, they need to be up to the task of restoring insulin production in people and automatically regulating blood-glucose levels. Although Vertex only shared the data for one individual, the company’s data shows that VX-880 can do this.
However, this clinical trial is in an extremely limited patient population—people with severe hypoglycemia. The cells in VX-880 do not have any sort of protection from the immune system, which is why immunosuppressive drugs are required. For this therapy to be applicable for the entire type 1 diabetes population, the cells need to both work and function without or with minimal immunosuppressive therapies.
There are few things to keep in mind while assessing the data. One is that these are only results from a single person. Data are needed from many more to fully evaluate the potential of this therapy. The second is that this person only received half the target dose of cells.
How well this therapy works is assessed using a few key measurements. One way is by measuring C-peptide levels—a marker that directly indicates whether insulin is being produced or not (or how much). The patient in this study had no detectable C-peptide at all before receiving the new cells, showing that their pancreas wasn’t producing insulin. After infusion of the cells, the patient had both fasting and stimulated C-peptide, which directly means that they are able to produce a background level of ‘basal’ insulin and that they could make more insulin on demand.
The patient also saw a significant reduction in their HbA1c, improving from 8.6% to 7.2% without severe hypoglycemic events (an amazing result, considering this therapy is only being tested in people with severe hypoglycemia). This lower HbA1c was achieved with a 91% daily reduction in insulin administration.
Another key metric to look at is safety. These therapies are of no use if they are not safe. During the first 90 days, this patient did not experience any severe adverse events that were considered related to VX-880. Individuals in this clinical trial are on a standard regime of immunosuppressive therapies, which do come with side effects.
This latest progress follows research developments funded by JDRF.
In 2000, JDRF gave a grant to Professor Doug Melton, to make insulin-producing beta cells from stem cells – which he did in 2014. Professor Melton then founded a company, Semma Therapeutics, to develop these cells into curative therapies for type 1. He named the company Semma in honour of his two children who live with type 1 diabetes. The JDRF T1D Fund then invested in Semma, which was later acquired by Vertex. In March 2021, VX-880 received fast-track designation for the Food and Drug Administration (FDA). The FDA’s Fast Track programme is designed to accelerate the development and review of new medicines.
Vertex will continue the clinical trial which is currently underway in the United States. The company plans to file an Investigational New Drug application with the FDA in 2022 for their encapsulated islet cell program, which could eliminate the need for immunosuppressive drug treatment and, if used successfully in conjunction with VX-880, could be a major step forward in finding type 1 diabetes cures.
Professor David Baker, a Breakthrough T1D-funded researcher at the University of Washington, has been awarded a Nobel Prize in Chemistry.
A study we helped conduct, which has just been published, reveals the most important unanswered questions about type 1 diabetes, based on the priorities of adults in the United Kingdom and Ireland. This will help guide future research to focus on what matters most to people living with the condition.
When given to mice and pigs with type 1 diabetes, a new type of oral insulin developed with JDRF funding detects rising blood glucose and quickly lowers it to a safe level without causing hypos.
New research finds that ustekinumab, a drug commonly used to treat psoriasis, may help children and adolescents with type 1 diabetes keep making insulin for longer.