Our resource hub is home to a wealth of articles, stories and videos about managing and living with type 1 diabetes.
Place your order for our free information packs that support adults and children who have been recently diagnosed.
Our researchers are working on different ways to develop a cure for type 1 diabetes - from growing insulin-producing beta cells in labs to hacking the immune system.
Learn about the technologies that can deliver insulin automatically when needed. And discover the next generation of insulins that are currently being developed.
You could win a cash prize of up to £25,000 when you play the Breakthrough T1D lottery. As well as the chance to win great prizes, you’ll also help fund our research to find a cure for type 1 diabetes.
Choose from a selection of modern and traditional designs in single or twin packs to support type 1 diabetes research this Christmas. Shop online and get fast delivery.
The announcement is the biggest treatment breakthrough for type 1 diabetes since the discovery of insulin.
This World Diabetes Day, we’re inviting you to celebrate by wearing your most joyful, whimsical and downright wonderful outfits.
We provide a wealth of information and free resources to help you support and empower your patients or students.
Take our free course for schools to learn more about supporting pupils with type 1 diabetes in educational settings.
JDRF has now rebranded to Breakthrough T1D. Our name has changed, our mission has not.
Home > News & events > News > New biochip launches that detects genetic risk of type 1 diabetes
A new test fixed to a slide (known as a biochip) that uses genetics and an algorithm to generate a genetic risk score to help predict who is at high risk of developing type 1 diabetes has been approved for use in the UK. This follows JDRF-funded research that aims to help people across the globe access emerging drugs that can modify the course of the condition.
The test, developed by the UK diagnostics company Randox using research from the University of Exeter, could help introduce population screening for type 1 in the UK and across the world. Following UK regulatory approval – the first such approval issued globally – the test will now be available to consumers in the UK, through Randox Health clinics, from the end of February.
Professor Richard Oram, a JDRF-funded researcher at the University of Exeter, developed the genetic risk score and has worked with Randox on developing the new biochip. Richard said: “The world is waking up to the value of screening programmes for type 1 diabetes because of new drugs which must be given at the earliest stages of disease. Our new biochip is a pioneering example of how understanding a person’s background genetic risk can help identify those at highest risk, ensuring they have further antibody screening so we can efficiently identify type 1 diabetes early enough for treatment to be effective. The Randox biochip could aid in speeding up decisions around who should be monitored and tested further, making public health screening cost effective and improving lives by increasing access to treatment.”
The new fingernail-sized biochip has copies of the genes indicating high-risk for type 1 diabetes fixed to its surface. DNA taken from an individual’s blood sample is applied to the biochip surface. If any of the genes in the person’s DNA match the high-risk genes on the biochip, the two will bind together and emit light. The test on the biochip can simultaneously identify up to 10 genetic variants linked to risk for type 1 diabetes.
The pattern of positive genetic variants the biochip detects indicates an individual’s overall genetic risk of type 1. The algorithm Richard developed is then applied to assess the risk associated with the identified genetic variants for each individual, to calculate a genetic risk score. The higher the genetic score, the greater the risk that the individual will develop type 1.
This score will help identify people who don’t have diabetes but are at high risk of developing the condition in future. These individuals can be monitored and referred for autoantibody screening, which tests for biological markers (called autoantibodies) that show the immune attack responsible for type 1 diabetes has begun.
Hilary Nathan, Director of Policy and Communications at JDRF UK, said: “For too long, type 1 diabetes has lain silent and undetected to subsequently devastate lives and cause chaos from the first days of diagnosis. This new biochip from Randox and the University of Exeter’s research is exciting, as the test could provide a new way to predict who is at risk from developing type 1. This knowledge then unlocks the opportunity to provide education and intervene at the earliest stages, enabling us to reduce the number of people being diagnosed with diabetic ketoacidosis, which can have traumatic and potentially fatal consequences. We are also on the cusp of a wave of transformative treatments, which can delay the onset of type 1, offering people invaluable years of life free from its burdens.”
Identifying people at high risk is particularly topical, as new drugs emerge that can reduce the impact of type 1 diabetes. Several drugs that target the immune system, known as immune therapies or immunotherapies, are currently being tested in clinical trials. While some trials recruit people newly diagnosed with clinical type 1 diabetes, others require participants to be in the earlier stages.
In the US, the immunotherapy teplizumab – the first disease-modifying treatment for type 1 diabetes – is used to delay progression in people with pre-clinical type 1 diabetes. The drug is not yet available in the UK, but we are working to get it approved here. Products like this biochip that identify people in pre-clinical type 1 are vital for when teplizumab arrives so we know who should be treated with it.
Around 90% of people who develop type 1 diabetes have no relatives with the condition, but certain genes are associated with type 1 diabetes risk. Having these genes alone is not enough to cause someone to develop type 1 diabetes. It is thought that an additional environmental trigger causes type 1 diabetes to develop.
Randox has more than 20 health clinics across the UK to bring innovative diagnostics like the biochip directly to people who need them. Dr Peter FitzGerald, Managing Director of Randox, said: “We’re delighted to have worked with the University of Exeter on this project to provide a screening tool to assess the genetic risk of type 1 diabetes which, aligned with autoantibody testing, can greatly improve diagnosis, patient care and access to therapeutics. This test is a game-changer in the diagnosis and treatment of type 1 diabetes, and we look forward to deploying the test to support public and private healthcare providers globally.”
Professor David Baker, a Breakthrough T1D-funded researcher at the University of Washington, has been awarded a Nobel Prize in Chemistry.
A study we helped conduct, which has just been published, reveals the most important unanswered questions about type 1 diabetes, based on the priorities of adults in the United Kingdom and Ireland. This will help guide future research to focus on what matters most to people living with the condition.
When given to mice and pigs with type 1 diabetes, a new type of oral insulin developed with JDRF funding detects rising blood glucose and quickly lowers it to a safe level without causing hypos.
New research finds that ustekinumab, a drug commonly used to treat psoriasis, may help children and adolescents with type 1 diabetes keep making insulin for longer.
Donate to JDRF today to support our research to prevent, treat and cure type 1 diabetes.