Skip to main content

JDRF has now rebranded to Breakthrough T1D.
Our name has changed, our mission has not.

Cure research

Primate with type 1 diabetes becomes insulin-independent after receiving gene-edited cells without immunosuppression

A transplant of stem cells grown into pancreatic islets has allowed a primate with type 1 to make its own insulin again. The transplanted cells were genetically edited to avoid the immune system, to prevent them being destroyed by the immune attack that causes type 1 or that defends against unknown cells, meaning the animal didn’t need immunosuppressant drugs.
Breakthrough T1D profile picture
Josie Clarkson 21 February 2024

A graphic of a DNA double helix with a piece being removed demonstrating genetic engineering.

In a new research project, published in the journal Cell Stem Cell, researchers in California have demonstrated they can stabilise glucose levels in a monkey with type 1 diabetes without using immunosuppressants through a transplant of genetically edited cells.

The genetically edited cells

The researchers took stem cells, a type of cell that can transform into almost all other cell types, from rhesus monkeys and grew them into islets. Islets are the clusters of cells in the pancreas where the insulin-making beta cells are. The researchers then genetically edited the islets to become ‘hypoimmune’, which means they can hide from the immune system. The cells had to not only hide from the immune attack that causes type 1, but also the body’s natural immune response to cells that come from a different animal.

Transplanting the hypoimmune islet cells

The researchers treated a type of monkey called a crab-eating macaque that had type 1 diabetes in this study. They stabilised the monkey’s glucose levels with insulin injections before transplanting the hypoimmune islets into its legs without giving it any drugs to suppress the immune system. Then, over 12 days, the researchers gradually reduced the insulin they were giving the monkey down to nothing.

Insulin independence achieved

A week after the transplantation, the monkey’s c-peptide levels, a measure of insulin production, had returned to normal. The monkey experienced tightly controlled blood glucose levels with no hypers over the six-month study period. The monkey’s c-peptide levels remained stable showing full insulin independence, meaning the researchers didn’t need to give it any insulin. The monkey was also continuously healthy, with no physical or behavioral issues other than a small amount of weight gain. The monkey’s body didn’t show any signs of immune recognition of the transplant or any immune response, showing the cells had successfully evaded its immune system.

Removal of the islet cells

After six months, the researchers deactivated the transplanted islet cells by destroying them with a chemical treatment. After this, the monkey’s blood glucose levels began to fluctuate, and it needed insulin injections again. The researchers did this to prove that the tightly controlled blood glucose levels and insulin independence were entirely because of the transplanted islets.

How is JDRF involved?

The experiment was done by Sana Biotechnology, a company that JDRF invests in through the T1D Fund, a JDRF initiative to driving cures for type 1 diabetes by catalysing private investment.

Dr Sanjoy Dutta, JDRF Chief Scientific Officer, said: “JDRF is dedicated to harnessing the power of research, advocacy, and community engagement to advance life-changing breakthroughs for type 1 diabetes. The development of cell therapies that replace the loss of insulin-producing cells could one day offer cures for type 1 diabetes. A key area of focus for JDRF is to develop strategies to protect these cells after transplantation that remove the use of broad immunosuppression.”

Next step: a first-in-human study

The researchers now need to run a clinical proof-of-concept trial where they transplant the hypoimmune islets into one person with type 1 diabetes. This clinical trial will be the first time the treatment has been given to a human (known as first-in-human) and will take place later this year, according to Sana’s Head of Hypoimmune Platform. The purpose of this is to assess the safety of the treatment, how well the islet cells survive and avoid the immune system, and whether the person can produce their own insulin as a result.

Dr Sanjoy Dutta said: “As a supporter and investor in Sana through the JDRF T1D Fund, we look forward to seeing if the results described in this paper translate into people, as they would represent a meaningful advance in the treatment of type 1 diabetes.”

Other news

Read more
Scientist researcher woman in white coat using microscope in laboratory
Research
1 July 2025

New trial results show potential protection against kidney damage in young adults  

A recent study has shown that a treatment currently used for type 2 diabetes could be used to help prevent kidney damage in young adults with type 1

Read more
A woman researcher at work in a lab
Research
24 June 2025

Six-month clinical data shows engineered islets can exist without immunosuppression

New data from Sana Biotechnology, in collaboration with Uppsala University Hospital in Sweden, shows that six months post-transplant, one person with type 1 diabetes (T1D) is successfully producing insulin and does not require immunosuppression.

Read more
Vertex Pharmaceuticals logo graphic
Research
23 June 2025

Vertex trial of Zimislecel cellular therapy enables ten of 12 participants to remain insulin independent

US-based company Vertex have published promising figures from their cell therapy trial, showing advancements in stem cell research.

Read more
Two older men at home reading type 1 diabetes information booklets.
Research
17 June 2025

Healthcare systems unprepared for rising number of older adults with T1D

We're calling for urgent reform as new report reveals older people with T1D are systematically failed by health and social care services.